
6 More on the 1D Wave Equation on the Line

We discuss here a number of basic points about the Cauchy problem

∂2u
∂t2

= c2 ∂2u
∂x2
, |x| <∞, t > 0

u(x, 0) = f(x), ∂u
∂t

(x, 0) = g(x), |x| <∞
(1)

6.1 Additional important concepts

Remark: domain of dependence, region of influence
Through every point in the domain R×R+ there are two characteristics, and
for our constant-coefficient wave equation, these are straight lines with one
having positive slope, the other having negative slope. Thus, they form a
triangle with the x-axis, the characteristic triangle, and as d’Alembert’s
formula shows, it is the initial data at the base of the triangle that is impor-
tant (see Figure 1). So the solution to (1) is composed of two components, u[1]

and u[2], namely u[1](x, t) = {f(x+ ct) + f(x− ct)}/2, the contribution from
the initial displacement, and u[2](x, t) = [

∫ x+ct

x−ct g(y)dy]/2c, the contribution
from the initial velocity of the string. Therefore, given the (homogeneous)
wave equation, for each point (x0, t0) in its domain, there is a domain of de-
pendence, namely the (closed) interval [x0−ct0, x0 +ct0]. Put another way,
u[1] depends on averaging the initial displacement at endpoints (x0 ± ct0, 0),
and u[2] depends on the average of the initial velocity g(·) over the interval
(x0 − ct0, x0 + ct0). This leads to another definition, that of the region of
influence. That is, given point (x, t) = (x0, 0), its region of influence is
the part of the domain between the characteristics x−ct = x0 and x+ct = x0

(see Figure 2) because any point in that region has a characteristic triangle
whose base interval contains x0. Thus, the solution at a point in the region
of influence of x0 is influenced by any non-zero data imposed at (x0, 0).

Remark: well-posedness
Given sufficient smoothness, as presented in the Theorem in Section 8, we
can also say that the IVP (1) is “structurally stable” in the following sense:
For any interval of time [0, T ], with T > 0, and any limiting error ε > 0, a
δ > 0 can be found such that two solutions to (1), u1 and u2, will differ by
less than ε, i.e.
|u1(x, t)− u2(x, t)| < ε, for all x ∈ R, t ∈ [0, T ],
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Figure 1: The characteristic triangle for point (x0, t0)

provided u1(x, 0) = f1(x), ∂u1
∂t

(x, 0) = g1(x), u2(x, 0) = f2(x), ∂u2
∂t

(x, 0) =
g2(x) differ by less than δ:
|f1(x) − f2(x)| < δ, |g1(x) − g2(x)| < δ for all x ∈ R. Hence, small changes
in initial data lead to small changes in the solution u.

The proof of this is straightforward. By d’Alembert’s formula, with uj being
the solution of (1) with data {fj, gj}, j = 1, 2, then

|u1(x, t)− u2(x, t)| =

|f1(x+ ct) + f1(x− ct)
2

−f2(x+ ct) + f2(x− ct)
2

+
1

2c

∫ x+ct

x−ct
g1(y)dy− 1

2c

∫ x+ct

x−ct
g2(y)dy| ≤

|f1(x+ ct)− f2(x+ ct)|
2

+
|f1(x− ct)− f2(x− ct)|

2
+

1

2c

∫ x+ct

x−ct
|g1(y)−g2(y)|dy ≤

δ

2
+
δ

2
+

1

2c
δ(2ct) = δ + δt ≤ δ(1 + T ),

which proves the statement if we put δ < ε/(1 + T ). Note that uniqueness
of solutions to (1) is an automatic consequence of this calculation; if we have
two solutions, u1 and u2, to (1) with data {f, g}, then |u1(x, t)−u2(x, t)| ≤ 0
from the above inequality (f1 = f2 = f, g1 = g2 = g), which implies u1 ≡ u2

for (x, t) ∈ R× [0, T ] for all T > 0.
This stability property of (1) is very desirable because it means if we

make small errors in determining the initial velocity and/or displacement,
we can expect to have just small errors in the solution. A problem is said to
be well-posed if the following three conditions are met:

1. the problem has a solution

2. the solution is unique
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Figure 2: The shaded area illustrates the region of influence for point (x0, 0)

3. the solution is stable in the above sense

Hence, for smooth data, the Cauchy problem (1) is well-posed. In these
Notes we will generally only discuss well-posed problems, but keep in mind
that there are important physical problems that are not well-posed.

Note also, that this definition of well-posedness is a bit vague, since the
notion of solution is not specified, nor is the notion of a solution being sta-
ble. If the data in the problem do not have the smoothness specified in
the theorem Section 5, page 5, we can not automatically take derivatives
of the d’Alembert formula and substitute it back into the equation, though
the formula still has value. This leads us to consider weakening the notion
of solution. A form of this is discussed in section 6.3.1. For a notion of a
solution being stable, we will stick with how be defined it above.
Remark: conservation of energy
As indicated in the examples of the last section, there is a conservation of
energy principle going on with our 1D wave equation. To demonstrate this,
recall from your physics course that kinetic energy of an object of mass m and
velocity v is 1

2
mv2. In the context of our infinite string, the kinetic energy is

the sum of all such contributions, so, in our scaled variables, write

KE =
1

2

∫ ∞
−∞

(
∂u

∂t

)2

dx.

Also, in our scaled variables, the system’s potential energy is given by

PE =
c2

2

∫ ∞
−∞

(
∂u

∂x

)2

dx
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So the total energy, E = KE + PE, is

E = E(t) =
1

2

∫ ∞
−∞
{(ut)2 + c2(ux)

2}dx. (2)

This assumes u(x, t) is the (classical) solution to (1), and that u2
t and u2

x are
integrable (so E is finite). Hence∫ ∞

−∞
(ux)

2 dx < 0 and

∫ ∞
−∞

(ut)
2 dx < 0 implies ux, ut → 0 as |x| → ∞ .

Now differentiate E:

dE

dt
=

∫ ∞
−∞
{ututt + c2uxuxt}dx.

But ∫ ∞
−∞

uxuxtdx = uxut|∞−∞ −
∫ ∞
−∞

utuxxdx = −
∫ ∞
−∞

utuxxdx,

so
dE

dt
=

∫ ∞
−∞

ut{utt − c2uxx}dx = 0.

Therefore, E is independent of t, that is, E = constant, for all t (so is given
by the initial data at t = 0), and this is just a statement of the energy con-
servation principle.

Remark: uniqueness
We can also obtain uniqueness of solutions using the energy argument. Sup-
pose there are two solutions, u1 and u2, to the Cauchy problem (1). Then
u := u1 − u2 satisfies the wave equation, and u(x, 0) = ut(x, 0) ≡ 0. Using
the energy expression E(t) in (2), we have E(t) ≥ 0 from the definition,
dE(t)/dt = 0 via the above calculation, and E(0) = 0 because of u′s initial
conditions. Hence, for all t ≥ 0, E(t) = 0, which implies u2

x ≡ 0, u2
t ≡ 0.

So u = constant, but because u is continuous for t ≥ 0, and u(x, 0) = 0 for
|x| <∞, then u ≡ 0 everywhere, which means u1 ≡ u2 everywhere.

Here are some extra practice problems:
Exercises
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1. Solve {
utt − 4uxx = 0 |x| <∞, t > 0
u(x, 0) = ut(x, 0) = 2 sin(3x) |x| <∞

2. Given utt = 2uxx for |x| < ∞, t > 0, u(x, 0) = H(x), ut(x, 0) =
H(−x), map out what the d’Alembert solution is in its domain. In
particular, what is u(x, t) at (x, t) = (1/2, 1/

√
2)? What is its domain

of dependence?

3. Determine the solution to the wave equation in the various regions of
the domain for the problem{

utt − c2uxx = 0 |x| <∞, t > 0
u(x, 0) = 2H(x+ 1), ut(x, 0) = H(x− 1) |x| <∞

6.2 Solution of the Cauchy problem with source terms

Consider the problem
utt = c2uxx + F (x, t) |x| <∞, t > 0

u(x, 0) = f(x), ut(x, 0) = g(x) |x| <∞
(3)

Theorem: If f and g are continuous, with continuous derivatives f ′, f ′′, g′

on R, and F is continuous on R × R+, and for each t > 0, F is integrable,
then the solution to (4) is

u(x, t) =
1

2
{f(x+ct)+f(x−ct)}+ 1

2c

∫ x+ct

x−ct
g(y)dy+

1

2c

∫ ∫
∆(x,t)

F (y, τ)dydτ

(4)
where ∆(x, t) is the characteristic triangle associated with point (x, t) at its
apex, so ∫ ∫

∆(x,t)

F (y, τ)dydτ =

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

F (y, τ)dydτ. (5)

Remark : By linearity of the equation, u = u1 + u2, where u1 is a solution
to problem (4) without the forcing term F , hence contributing the first two
terms of (5) via d’Alembert’s formula, while u2 is a solution to (4) with
f = g = 0. So, for a problem with zero initial data, but with source term F ,
u2 would be equal to the last double integral of (5).
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There are a number of ways to obtain (5) as the solution to (4), but one
of the simplest ways is to use Green’s theorem from calculus. We will go
through the argument in subsection 6.3.

Example 1 : {
utt = uxx + x |x| <∞, t > 0
u(x, 0) = sin(x), ut(x, 0) = 0 |x| <∞

(5) gives u(x, t) = 1
2
{sin(x+ t) + sin(x− t)}+ 1

2

∫ t
0

∫ x+(t−τ)

x−(t−τ)
ydydτ . First,∫ t

0

∫ x+(t−τ)

x−(t−τ)

ydydτ =

∫ t

0

(
y2

2
|x+t−τ
x−t+τ )dτ

=
1

2

∫ t

0

{(x+ t− τ)2 − (x− t+ τ)2}dτ

= 2

∫ t

0

x(t− τ)dτ = xt2 ,

and

1
2
{sin(x+ t) + sin(x− t)} = 1

2
{sin(x) cos(t) + cos(x) sin(t)

+ sin(x) cos(t)− cos(x) sin(t)} = sin(x) cos(t) .

Therefore, u(x, t) = sin(x) cos(t) + xt2

2
.

Example 2 : {
utt = c2uxx + cos(x) |x| <∞, t > 0
u(x, 0) = 0, ut(x, 0) = 1 + x |x| <∞

Now

u(x, t) =
1

2c

∫ x+ct

x−ct
(1 + y)dy +

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

cos(y)dy dτ .

Note,∫ x+ct

x−ct
(1 + y)dy = 2ct+

1

2
{(x+ ct)2 − (x− ct)2} = 2ct+ 2cxt = 2ct(1 + x).
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Finally,∫ t
0

∫ x+c(t−τ)

x−c(t−τ)
cos(y)dydτ =

∫ t
0
{sin(x+ c(t− τ))− sin(x− c(t− τ))}dτ

= [sin(x+ ct)− sin(x− ct)]
∫ t

0
cos(cτ)dτ − [cos(x+ ct) + cos(x− ct)]

∫ t
0

sin(cτ)dτ

= 2
c

cos(x)(1− cos(ct)) .

Putting these together, we have
u(x, t) = t(1 + x) + 1

c2
cos(x)(1− cos(ct)).

Exercises

1. Solve {
utt = c2uxx + xt |x| <∞, t > 0
u(x, 0) = 0, ut(x, 0) = 0 |x| <∞

(ans: u(x, t) = xt3/6)

2. Solve {
utt = c2uxx + eax |x| <∞, t > 0
u(x, 0) = 0, ut(x, 0) = 0 |x| <∞

(ans: u(x, t) = eax{cosh(act)− 1}/(ac)2)

6.3 Appendix to the Section

6.3.1 Weak solution of the 1D wave equation

The solution to the problem (1), as expressed by d’Alembert’s formula, is
only a classical solution as expressed by the Theorem in Section 5, page 5,
if the data {f, g} is smooth enough. In illustrating the interpretation of
d’Alembert’s solution we used discontinuous initial displacement and/or ini-
tial velocity, and showed that singularities are propagated (with finite speed)
by the characteristics. The characteristics that propagate the singularities
break the domain into a number of regions where the solution exists in the
classical sense in each region. But the solution is not smooth on the charac-
teristics. I want to extend the notion of solution using a algebraic property.

Suppose we go back to the general solution of the wave equation, namely
u(x, t) = F (x − ct) + G(x + ct) = F (ξ) + G(η), but we no longer require
F,G to be C2 on domain (x, t) ∈ R × R+. Consider rectangle ABCD in
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Figure 3: This figure is for illustrating the parallelogram rule

ξ, η plane (Figure 3). The sides of the rectangle are parallel to the axes,
so F (ξ) = constant on vertical lines, G(η) = constant on horizontal lines.
Hence, F (A) = F (D), F (B) = F (C), G(A) = G(B), G(C) = G(D), and so
u(ξ, η) = F (ξ) +G(η) implies

u(A) + u(C) = u(B) + u(D) , (6)

so sums of values of u at opposite vertices are equal. After translating to the
x, t plane (right graph in Figure 3) the parallelogram has sides parallel to
the characteristic directions. View (6) as a parallelogram rule. Therefore,
a weak solution of the wave equation is defined to be any function u(x, t)
satisfying (6) for all parallelograms in its domain with sides as segments of
characteristics.

6.3.2 Proof of the theorem in section 6.2

We want to make use of Green’s theorem∫ ∫
∆

(Px −Qt)dtdx =

∫
∂∆

Pdt+Qdx.

(This also allows you to see the use of line integral and use of this (calculus)
theorem again. See Figure 4 for notation.)

Let P = −c2ux and Q = −ut. Then Px = −c2uxx and −Qt = utt, so
Px −Qt = utt − c2uxx. Therefore,∫ ∫

∆

(Px −Qt)dtdx =

∫ ∫
∆

(utt − c2uxx)dxdt =

∫ ∫
∆

Fdxdt,
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Figure 4: This figure gives the notation used in the proof of the Theorem

but the left-hand side is also equal to∮
∂∆

Pdt+Qdx =

∫
L0+L1+L2

{−c2uxdt− utdx}.

Now along L0, dt = 0, so with ut(x, 0) = g(x), this implies∫
L0

(Pdt+Qdx) = −
∫ x0+ct0

x0−ct0
g(y)dy.

On L1, x+ ct = x0 + ct0, so dx+ cdt = 0, or dx = −cdt, so −c2uxdt−utdx =
cuxdx− utdx = cuxdx+ cutdt = cdu. Hence,

∫
L1

(Pdt+Qdx) = c

∫
L1

du = cu|(x0,t0)
(x0+ct0,0) = cu(x0, t0)− cf(x0 + ct0).

On L2, x− ct = x0 − ct0, so dx = cdt, which gives∫
L2

(Pdt+Qdx) = −c
∫
L1

du = −cu|(x0−ct0,0)
(x0,t0) = −cf(x0 − ct0) + cu(x0, t0).

Adding the three integrals together gives∫ ∫
∆

Fdxdt = −
∫ x0+ct0

x0−ct0
g(y)dy + 2cu(x0, t0)− cf(x0 + ct0)− cf(x0 − ct0).

Rearranging terms and dividing by 2c gives solution formula (4).
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